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EXECUTIVE SUMMARY 
The addition of spherical inclusions and fibers into a traditional ceramic matrix 

can provide enhanced ductility and toughness over that of the monolithic ceramic. The 
primary objective of the research was to provide an improved microstructural 
understanding of a fiber-reinforced composite material. To properly identify the 
fundamental issues, a combination of expertise in experimental methodology and of the 
formulation of advanced constitutive equations is required. Experimental data shows the 
dominant failure mechanisms and the theoretical investigation focuses on these features. 

Preliminary experimental data for a particular alumina showed that failure 
occurred almost exclusively along grain boundaries. The obvious conclusion is that the 
properties of material that constitute grain boundaries must have a dominating influence 
on the failure mode and strength of the ceramic. A second observation was that there did 
not appear to be a microcrack-cloud zone, a result that is contrary to some reports in the 
literature. Instead, microcrack branches form along grain boundaries with one 
microcrack eventually becoming dominant to the point where all contact is lost at which 
time the adjacent microcracks become inactive. The process can be thought of as 
decohesion in which traction carrying capability is gradually reduced to zero as a 
microcrack evolves to a macrocrack. This procedure is also called material failure. 

Microcracks actually represent a strong discontinuity in displacement, a feature 
that is particularly difficult to represent both theoretically and numerically. Since failure 
along the boundaries of inclusions and fibers is also one of an evolving microcrack, the 
key component to being able to analyze a whole class of problems is that of modeling 
decohesion. Simultaneously, there is the problem of obtaining a robust numerical 
solution procedure. 

A team at the University of New Mexico has been in the forefront of the 
development of a numerical scheme applicable to a wide range of problems in continuum 
mechanics called the Material Point Method (MPM). Part of this research involved 
investigating the suitability of the method for handling material failure. Simultaneously, 
a thermodynamically-based derivation of a decohesion model was developed to the point 
where the evolution of decohesion could be handled through a constitutive equation. 
This precludes the need for special elements, realignment of elements or of continuous 
remeshing as a crack propagates. Because a length scale is a natural part of a decohesive 
constitutive equation, convergence with mesh refinement can be expected and is, indeed, 
shown. Schreyer, Sulsky and Zhou have provided a study of ceramic grains showing the 
potential effect of how damage may evolve with cooling. 

A true representation of the behavior of quasibrittle materials must take into 
account both the three-dimensional nature of the problem and the randomness of grain 
sizes and the strength of cement paste. Wang and Chen have provided both numerical 
and experimental data to show that such a fundamental approach can provide the 
observed features of failure including the important effects of boundary constraints. 

It was quickly realized that a comprehensive study of the effects of inclusions and 
fibers could only be performed provided a complete description of the matrix material is 
understood. Therefore, the direction of the research became more fundamental and 
concentrated on grains and inclusions, and their boundaries. Results of these efforts are 
provided by three papers reproduced here as sections of the final report. 

n 
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MODELING MATERIAL FAILURE AS 

A STRONG DISCONTINUITY WITH 

THE MATERIAL POINT METHOD 

Howard L. Schreyer1, Deborah L. Sulsky2 

and S.-J. Zhou1 

'Dept, of Mechanical Engineering 
2Dept, of Mathematics and Statistics 

University of New Mexico 

Albuquerque, NM USA 87131 

ABSTRACT: 

A discrete constitutive equation for modeling material failure as a decohesion 

or separation of material to form two free surfaces is a relatively simple approach. 

However, numerical simulations based on such a model involve considerable 

complexity including remeshing if the finite element approach is used. Here, a 

basic formulation involving the simultaneous application of the continuum and 

decohesion constitutive equations is described together with a numerical approach 

based on the material point method. Preliminary results indicate that failure 

propagation can be predicted at an arbitrary angle without the dispersion of the 

crack front that is often observed with conventional finite elements. 

KEY WORDS:   Decohesion,   localized deformation,   softening,  material point 

method, strong discontinuity. 



1. Introduction 
The propagation of cracks through concrete is just a manifestation of material 

failure. Numerous models of failure have been proposed together with numerical 
procedures for obtaining solutions to the governing boundary value problem. 
Unfortunately, the material model for failure is often entwined with the numerical 
approach so that it is difficult to determine which aspect is the limiting component 
if predictions do not match experimental data. Here, we attempt to carefully 
differentiate these two essential components by first concentrating on a basic failure 
model, and then proposing the use of a relatively new numerical procedure, the 
material point method. Preliminary results indicate that the difficulties associated 
with the finite element method are not present. 

There are many criteria for material failure but the definitions of failure are often 
vague or defined implicitly through each criterion. We take material failure to mean 
the process by which two new free surfaces are formed, with brittle fracture as an 
obvious example. However, there are other forms of material failure as exemplified 
by ductile rupture, delamination, the breaking of grain boundaries and the pullout of 
reinforcing rods or fibers. Our interest is to represent all of these phenomena with a 
single model that incorporates the essential features of the state of stress or strain at 
which failure initiates and predicts the correct energy dissipated. Our focus is not on 
replicating the details of failure, although this can be done in some cases, but on 
predicting the effect of failure on the far-field stress distribution and on structural 
response as reflected, for example, by a force-deflection curve. The proposed 
approach is a constitutive equation that describes decohesion. When used with the 
material point method, which is a relatively new computational method that is 
particularly robust for problems with large deformations, the proposed approach has 
a simple structure in that the decohesion comes into the analysis through the 
constitutive equation only. There is no attempt to enforce the geometrical 
continuity of a crack. Instead, compatibility is enforced in an averaged sense. 

Failure modeling involves both theoretical formulations of constitutive equations 
and numerical simulations, and the two aspects should be carefully delineated. 
However, the finite element method has become the method of choice for the 
majority of engineering applications so that the formulation of the constitutive 
equations is often tailored for use by finite elements; conversely limitations imposed 
by the finite element method are often interpreted unjustly as a limitation of the 
theoretical approach. In the following brief survey, we attempt to keep the 
discussion of the two phases distinct if at all possible. 

A large number of papers related to failure have been based on a zone of softening 
with an assumed width in which a continuum constitutive equation continues to be 
used [BAZ 84, BOR 87, ROT 87, OLI 89, DAH 90, WE 98]. A theoretical 
difficulty with such an approach is the possible loss of ellipticity and material 
stability within the band. When used with finite elements, the band width is 
associated with the size of the elements and the accuracy is then limited when the 
elements become highly deformed. 



An alternative (discrete) approach is to consider material failure as a strong 
discontinuity in displacement with traction related to the discontinuity. There is a 
long history in which discrete constitutive equations are postulated directly as 
reflected by Barenblatt [BAR 59], and Hillerborg et al. [HIL 76]. Feenstra et al. 
[FEE 1991] and Corigliano [COR1993] provide a nice summary of previous models 
and describe numerical methods based on the use of interface elements. The use of 
discrete constitutive equations has not met with complete favor partially because 
strong discontinuities are difficult to handle numerically and convergence with mesh 
refinement and mesh insensitivity is difficult to show. The use of interface elements 
may require frequent remeshing if the crack surface propagates in a curved manner, 
and double nodes which separate with the evolution of decohesion [SCH, 1992]. 
However, Dvorkin et al. [DVO 90] provide a nice approach that overcomes many of 
these objections by handling discontinuities at the element level rather than 
enforcing discontinuities to be along element boundaries. 

A fundamentally different approach is described in more recent work by Simo et 
al. [SIM 93] in which the continuum constitutive equation is extended beyond the 
loss of ellipticity condition into the softening regime. They argue that this 
extension should be accompanied by distribution theory which, in effect, leads to a 
strong discontinuity. The theory has since been extensively developed by Oliver 
[OLI 89], Simo and Oliver [SIM 94], Armero and Garikipati [ARM 95], Larsson and 
Runesson [LAR 96], Oliver [OLI 96] and Armero [ARM 97]. The final result is 
discrete constitutive equations relating stress to the discontinuity in displacement, 
and here also the discontinuity is handled at the element or constitutive level. 

We have opted for a particular combination of these ideas in an attempt to 
provide an approach that is as simple and as straightforward as possible. First, we 
propose the direct introduction of discrete constitutive equations with the thought 
that they should be introduced when ellipticity is lost, although a direct failure 
initiation criterion can be used. No attempt is made to model the post-crack 
frictional effects that may occur with surfaces with rough cracks [FEE 91] although 
such features can be added. Second, the discontinuity is considered to be part of the 
constitutive equation and is applied in a manner analogous to that of Dvorkin PVO 
91], Oliver [OLI 96a, OLI 96b] and Armero [ARM 97]. A point that is undergoing 
failure is also considered to be a material point in the continuum so that the 
decohesion and continuum constitutive equations must be simultaneously satisfied 
subject to the restriction of traction equilibrium. Third, we invoke the constitutive 
equation in the material point method. The arguments for the direct calculation of 
the strong discontinuity in displacement, which we also call decohesion, and the use 
of the material point method are summarized as follows: 
(i) We retain the conceptual simplicity inherent with  the discrete constitutive 
approach that material failure does not happen abruptly but occurs smoothly with a 
gradual reduction in traction as the displacement discontinuity increases, 
(ii) We believe it is extremely difficult to evaluate properties of any constitutive 
equation in the failure regime.   However, it is probably easier to select material 



parameters for a discrete constitutive equation than for a continuum model extended 
into the softening regime. 
(iii) The discrete equation can be applied, if desired, at the instance ellipticity is lost 
so that there is a high probability that well posedness can be retained although a 
stability analysis must be performed [SUO 92]. 
(iv) The essential aspects of prescribed stress at the initiation of failure and prescribed 
energy dissipation at the end of failure are automatically included in this model. 
(v) Once decohesion is initiated on a surface of discontinuity, the adjacent continuum 
tends to unload into the elastic regime, so the computational simplicity of only 
needing to combine decohesion with elasticity covers the vast majority of practical 
cases. 
(vi) The decohesion constitutive equation can be developed in a thermodynamical 
setting, in concert with many current continuum models, and can include plasticity, 
damage, viscoelastic and viscoplastic features that are associated strictly with the 
decohesion. 
(vii) The application of decohesion constitutive equations in the material point 
method retains the simplicity of current applications of strong discontinuities at the 
element level in the finite element method.   However, double nodes or interface 
elements are not needed and there is the additional potential advantage that mesh 
orientation and mesh distortion are not factors that need to be considered. 
(viii) Following the method outlined by Allix and Corigliano [ALL 95, ALL 96] 
there is the potential of relating the decohesion constitutive equation to mixed-mode 
fracture. 
(ix) Finally, the use of a discrete constitutive equation may still be a suitable model 
for diffuse failure if the primary objective is to obtain an efficient solution for the 
region away from the failure zone. 

The next section provides only a brief description of the material point method 
since the method has been fully described in previous papers. Section 3 describes the 
basic structure of the decohesion model used in our analysis. Analytical and 
numerical solutions to model problems [ZHO 98] including a convergence study are 
given in Section 4 which is then followed by conclusions concerning the general 
applicability of the method for material failure in general including delamination. 

2. The Material Point Method 
The material point method [SUL 94, SUL 95, SUL 96] discretizes a solid body 

by marking a set of material points in the original configuration that are tracked 
throughout the deformation process. Let xj, p = l,...,Np denote the current position 

of material point p at time t\ n = 0, 1, 2, .... These material points provide a 
Lagrangian description of the solid body that is not subject to mesh tangling. Each 
point at time f has an associated mass, mp, density, pj, velocity, v°, Cauchy stress 

tensor, a°, strain, ej, and any other internal variables necessary for the constitutive 



model. If temperature changes are important, internal energy or temperature may 
also be ascribed to the material points. The material point mass is constant in time, 
insuring that the continuity equation is satisfied. Other variables must be updated 
with reference to conservation of momentum, conservation of energy, or from the 
constitutive model. 

To make the computations tractable, at each timestep of a dynamic algorithm, 
information from the material points is interpolated to a background computational 
mesh. This mesh covers the computational domain and is chosen for computational 
convenience. A particularly simple choice is a regular rectangular grid. After 
information is interpolated to the grid, equations of motion are solved on this mesh 
which is considered to be an updated Lagrangian frame. For example, to solve the 
momentum equation on the grid using an explicit FE algorithm, one must know the 
value of the momentum at the beginning of the timestep at the nodal positions. The 
nodal momentum, m?v°, is the product of the nodal mass and nodal velocity, and 
each is determined by interpolation, 

mr = fmpN,(xJ) 

m°v° =Impv°pNi(x;) 
p-i 

In the above, Nj(x) is the nodal basis function associated with node I.   In this paper, 
Nj(x) are the tensor products of piecewise linear functions.   The internal forces are 
determined from the particle stresses according to 

f,ta=-IGi;o;mp/pj (2) 

The quantity G°p is the gradient of the nodal basis function evaluated at the material 

point position, G°p = VN,(x)| „. The momentum equation is solved with the nodes 
p 

considered to be moving with the deformation to give nodal velocities, v,L, at the 
end of this Lagrangian timestep of size At, 

m»^-lL = f».. (3) 

At the end of this Lagrangian step, the new nodal values of velocity are used to 
update the material points.    The material points move along with  the nodes 
according to the solution given throughout the elements by the nodal basis functions 

xJ^xJ+AtÜJvj-N.fr;). (4) 

Similarly, the material point velocity is updated via 

vr'-^+Sw-v'JNifr;)- (5) 
The sums in these last two equations extend from 1 to N„ where Nn is the number of 
nodes in the computational mesh. 

A strain increment for each material point is determined using the gradient 
of the nodal basis function, 

AeJ=^^[G^+(G»v^T]- (6) 



This strain increment is then used in an appropriate constitutive equation for the 
material being modeled to update the stress at the material point. Any internal 
variables necessary in the constitutive model can also be assigned to the material 
points and transported along with them. Once the material points have been 
completely updated, the computational mesh may be discarded and a new mesh 
defined, if desired, and then the next timestep is begun. 

The material point method has several advantages. The Lagrangian description 
provided by the material points can undergo large deformations without mesh 
tangling. Since the computational mesh is under user control, it can be chosen so 
that reasonable timesteps may be taken in this Lagrangian frame. Usually, the 
timestep is restricted by the CFL condition for an explicit algorithm, where the 
critical timestep is the ratio of the mesh size to the wave speed. Note that this 
condition depends on the more favorable mesh spacing, not the material point 
spacing. Since equations are solved in an updated Lagrangian frame on the FE mesh, 
the nonlinear convective terms troublesome in Eulerian formulations, are not an 
issue. Finally, the material points transport material properties and internal 
variables without error. 

3.   Discrete   Constitutive   Equation   For 
Decohesion 

3.1 The Theoretical Model 
We define the initiation of material failure as the time when a material point 

first experiences a discontinuity in displacement but continues to function as a point 
in a solid continuum. A collection of such points in a neighborhood defines a 
failure surface, T. Although the material manifestation is a single surface, one . 
observes spatially two surfaces, Tv and TL, as sketched in Fig. 1. Each dotted line 
illustrates points in space identified with a single material point which can be 
considered associated with any one of the spatial points on the line. The sketch 
illustrates the material surface as a thick line between the two spatial surfaces but if 
a Lagrangian description is used, the material surface may be at a totally different 
location. Failure is said to be complete when traction can no longer be sustained on 
the material surface, i.e., the spatial surfaces no longer have any ligaments 
connecting them even though one point on each surface is identified as a single 
material point. The discontinuity in displacement is called decohesion. 

Here, we present a development of discrete constitutive equations using 
thermodynamics as a framework with the result that the dissipation inequality is 
automatically satisfied. The approach entails two essential assumptions consisting 
of (1) the form of the free energy, and (2) the form of the evolution equations. Each 
assumption leads to a different model which can only be tested by solving a problem 
for which either qualitative or quantitative data exist.   To allow for the presentation 



of different models in a convenient manner, we present the general framework first, 
and then show the implications inherent in specific assumptions. 

rL 

(a) Decohesion in spatial configuration - two surfaces. 

(b) Decohesion in material configuration - surface 
with discontinuities 

Fig. 1. Material failure as represented by two spatial surfaces, Tv and rL, 
or one material surface, T. 

The approach is analogous to what one might use for a rigid-plastic continuum 
for which the elastic part of the response is ignored, i.e., the total strain and the 
plastic strain are identical. The internal strain energy does not exist and the stress 
must be provided by the solution to a boundary value problem. However, there 
remains a contribution to the free energy associated with hardening and evolution 
equations for plasticity variables. 

Consider a situation where loads are applied to a body which is continuous except 
on a material failure surface, T, which displays a strong discontinuity, or decohesion, 
ud = [u]. Any point on the suface is also a point in the continuum which is 
assumed to be governed by linear elasticity so that the stress, o, and strain, e, are 
linearly related by the elasticity tensor, E: 

a = E:e (7) 
If n denotes the normal to the surface, then the traction, T, is given by T = (Jn. 
The rate at which power is being added to the surface by this traction is x • ud in 
which a superposed dot denotes a derivative with respect to time. We postulate that 
the free energy per unit surface area consists of an initial energy, U0, due to residual 
stresses that resulted from the curing process, and a term, Uä, which represents the 
effect of decohesion: 



U = U0-Ud(ü) (8) 
The use of the negative sign is meant to suggest that normally energy is provided by 
the original material to the decohesion process. The parameter, Ü, is a scalar 
representation of the state of decohesion. The specific choice for Ud (positive) is part 
of a particular model The decohesion, up, is viewed as "permanent" decohesion and 
is introduced similarly to plastic strain in elasto-plastic continuum models. In the 
absense of elasticity, up = ud. 

If only up and ü are considered to be the primary variables describing decohesion, 
the dissipation rate is 

Ds =T-üd-Ü = T-ü'' + xn       with       * = ~ä=- (9) 

The generalized traction, x, is conjugate to ü. Instead of the traction starting at 
zero, as it does for some existing discrete models [NEE 87, COR 93], we visualize 
that when the failure process starts, ud = 0, up = 0, and the traction is the initial 
vector, T0 which depends on the path. 

We parameterize the development of decohesion through a single, dimensionless 
monotonically increasing variable, X, and the evolution equations 

ü"=Xmc t = Xm< (10) 
in which me and me denote evolution functions that depend on X and x. me is a 
vector whose inner product with X is assumed to be positive, semi-definite. If we 
introduce an effective traction 

x'=xm' (11) 
then the dissipation rate becomes 

D, =Ä.[x«+xm'] (12) 
To ensure the dissipation is positive, define a decohesion function as follows: 

F„=x< + xm<-F0 F0>0 (13) 

The function has been constructed in the usual manner so that Fd is negative when 
the tractions are zero. We assume decohesion does not occur unless Fd = 0 in which 
case the dissipation rate becomes Ds = XFa, a positive scalar (and Fd > 0 is not 

permitted). The evolution equations can now be interpreted as parameterized in terms 
of dissipation which is a monotonically increasing parameter. The total dissipated 
energy is simply D = XF0 which depends only on the value of X and not on the path 
followed to achieve a given value of X. 

Next, we consider the decohesion condition, Fd = 0. At the initiation of 
decohesion, X - T„ and m' = m%. If we assume x = 0 at the initiation, then 

F0=x0=x0-mS (14) 

and the decohesion condition reduces to 
xe=x5-xmc (15) 

Typically, x increases to the point where x* goes to zero and x = xs = x'01 m.\ which 
is defined to be separation. The values of up and II at separation are denoted by 
us

p and us, respectively. Unless there is a load reversal which brings the two spatial 

surfaces back into contact, it is assumed that xe remains zero after separation. 
With the use of (8), the stored surface energy lost due to separation is 



*„=-Ud(ü.) (16) 
The total energy per unit area that must be provided to cause total separation is 
variously called the fracture energy, or the energy of separation, 4>F, and consists of 
the sum of the stored energy and the dissipated energy: 

*F =<&„ + *„ (17) 
Because Ow is negative, the fracture energy is less than the dissipation. 

In summary, the resulting set of constitutive equations in rate form becomes 
(i)   d = E: e Continuum elasticity 

(ii)  T = a • n Traction equilibrium 

(iii) up = fan'     u = tan'      Evolution equations 

_    3U 
(iv)  x = -T=r Constitutive equation 

(18) 

(v) F„ = x' - {x'0 - xme) = 0     Consistency 

(vi) xe = x • me and x'0 = x0 ■ mj; 
Two additional assumptions remain to completely formulate constitutive 

equations; (i) the form of the evolution equations for the evolution functions me and 
me, and (ii) the form of the function Ud which provides a constitutive relation 
between x and ü. Even slight changes in the forms of these assumptions can have 
significant effects on predictions. Since the only possible way to evaluate the 
suitability of decohesive constitutive equations is indirectly through comparisons of 
solutions to problems with features provided by experimental data, we consider (18) 
to be the basic format and provide different models based on plausible assumptions. 
The results of choosing specific forms for me, m° and Ud are given next. 

3.2 Model 1:    Associated Evolution Equations 
Here we are more specific in our formulation of the decohesion model. In the 

theoretical formulation, it is most convenient to use dimensional parameters so that 
physical interpretations can be easily made; conversely, for numerical 
implementation of the theory, dimensionless variables should be used. With these 
objectives in mind, we choose X to be dimensionless and consider ü to have the 
dimension of length (in analogy with the decohesion ud). We choose the evolution 
functions and the decohesion energy to be of the following forms: 

me = ü  A"'T  me = ü U = U ("^o)  fim m     ^(x-A.-xy2 m     U° U"     U°    (q + 1) uy; 

in which Ad is taken to be a positive  definite (dimensionless) tensor whose 
components are material parameters, as is  q > 0.    Additional material parameters 

(constants) are the reference decohesion scalar, U0, and the reference surface energy, 
U0. We define a reference scalar traction,   x0,  by the relation  U0 = G0x0.     The 
immediate result of these choices is that 

r=ü0(x-Ad-x)w ü = Xü0 T = T0(X)" (20) 

10 



and the evolution functions are obtained as derivatives of the damage function with 
respect to the corresponding conjugate variables, i.e., the evolution functions are said 
to be "associated": 

—£ '    «-$ <21) 
At this point we consider a two-dimensional formulation with n denoting the 

normal to the failure surface and t a unit tangent vector as indicated in Fig. 1. 
Corresponding components of x are Tn and x„ respectively. If the traction consists 
only of a normal component, specify the failure initiation value as x^ and, similarly, 
let ttf denote the failure initiation value for a purely shear case. One approach for 
incorporating these failure initiation conditions is to choose the components of A^ 
with respect to this local basis as follows: 

1 

[AJ = x0
2 (*J2 0 

0 l 
(22) 

(T„)\ 
The consequences of this choice are 

DS = 1U0       x* = r      F„ = U0F;       F; = T--(I-T*) 
,t._(T-Ad-T)"z_/T'„   ,  tfx (23) 

xe = U„xe' 
L nf *• tf x° 

where xc' is a dimensionless effective traction, x * is a dimensionless form of x, 
and F„* is a dimensionless decohesion function. In deriving these equations, the 

identities F0 = xj = U0 have been used. The identities follow from the conditions at 

the initiation of decohesion that u = 0 and V' = 1. 
We note that the decohesion condition (Fd* = 0) reduces to V = 1 - x *. As 

decohesion occurs ü increases and V decreases to zero when ü = ü0. Therefore ü0 

can be interpreted as the value of ü at which separation occurs. In the post 
separation regime, ü > ü„, the decohesion condition is xe' = 0. Finally, we give an 
alternative form for the decohesion evolution function: 

m<=-^-(£-n + :W (24) 

Since the dissipation rate is XU0, the energy dissipated per unit surface area at 
any moment is simply XU0. From (20), X = 1 at separation so the maximum 
energy dissipated is U0 which provides a physical interpretation and a method for 
determining this particular parameter. The formulation implies the dissipated energy 
is independent of path which is generally not representative of real materials. The 
final value of the stored energy is obtained by substituting ü = u0 in (19) and using 
(16). In summary, the final dissipated, stored and total failure energies are: 

°°=U° ^=-(qrb)U° ^ = (qTT)U° (25) 

Suppose a pure opening-mode path is followed, or X, = 0.    Then it is easily 
shown that un = ü(x0 / x„,).   If x0 is chosen to equal x^, then  ü equals un for 

Mode I. Experimental data obtained from a pure shear mode test can then be used to 
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assess the adequacy of the model in a process similar to that used to evaluate Mises 
plasticity. The limitation of a single value of dissipated energy can be circumvented 
by using a multifunctioned decohesion surface. The development of such a surface is 
beyond the scope of what we wish to achieve. For the given model, the required data 
are xnf, xtf, U0 and q.   We can choose x0 = T„, and then u0 = U0 / !„, to provide 

values for all of the parameters. 
Sometimes nonassociated models are required to provide a better fit with 

experimental data including observations on the mode of failure. Next we give an 
example of how a particular nonassociated model can be constructed. 

3.3 Model 2: Nonassociated Evolution Functions 
Suppose we retain all aspects of the previous model with the exception that the 

evolution equation for the permanent decohesion is in the normal, or opening, 
direction irrespective of the state of traction: 

ü; = iml üf = 0 me„ = me n (26) 
We retain the previous expression for 1° and the decohesion function. Therefore, the 
dissipation rate for normal mode decohesion must be evaluated specifically from the 
following equation: 

Du=T-ü'+fiE =X[t.üS+Tü0] (27) 
which will be less than that obtained with the associated rule (sometimes called the 
Principle of Maximum Dissipation) if t, is not zero for at least part of the 
decohesion. 

A corresponding development for Mode II (pure shear) evolution can be obtained 
by merely replacing normal components of traction with shear components. 

4. Numerical Application 

4.1 Incorporation with the Material Point Method 
In general, there is no need to determine the actual shape of the deformed material 

element associated with each material point. However, when material separation 
occurs, there is a need to consider the effect on the strain field over the material 
element (compatibility). For small deformations, which would be the case normally 
for quasibrittle materials and for small rotations, the original configuration can be 
used. Typically, each cell with the material point method is chosen to be a square 
element with each side of length h and the element associated with each material 
point can also be chosen similarly to be a square of size hp = h/ Jn^ where np is 

the number of material points per cell. Over each material element, the increment in 
strain, Ae, is assumed to be constant as is the increment in decohesion, Aud, as 
indicated in Fig. 4 which also shows the unit vector m = Aud / |Aud[. For future 
use, define the opening, Mn, shear, M„ and failure, Mm, tensor modes as follows: 
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M„ =n<8>n 1 M,=i(n< 1 )t + t®n) Mm =-j(n®m + m®n) (28) 

We note that Mm reduces to Mn and M, when m = n and m = t, respectively. 
For a given, time increment, if the total (average) strain increment, Ae, is 

considered fixed, the result of the decohesion is that the effective strain increment in 
the remaining part of the material in the element must be reduced (relaxed) by what 
might be called a decohesion strain increment, Aed, which satisfies a weak form of 
the compatibility condition 

jAeddV= jAu"MmdA Aud=Au"m (29) 

in which dV and dA denote differentials of volume on the material element, Qp, and 
of area on the decohesion surface, 3£2„, respectively. The magnitude of the 

decohesion increment, which is in the direction of m by definition, is Aud. With the 
assumptions that the decohesion and strain are constant over each material element, 
the result is the following expression relating the "relaxation" or "decohesion" strain 
increment to the increment in decohesion: 

Ae"=^-Mn Le=^- (30) 

The effective length, Lc, is merely the ratio of the element volume to the area of the 
decohesion surface within that element. For the two-dimensional case illustrated in 
Fig. 2, the effective length is 

L =■ 
coscc„ 

0<ap<f (31) 

with a corresponding formula for an angle measured with respect to the other side of 
the material element if 0Cp > TC/4. 

Fig. 2. A typical material element with decohesion. 
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4.2 Solution Algorithm 
The constitutive equations subroutine is invoked with the total strain increment, 

Ae, prescribed, with the total decohesion equal to the plastic decohesion, and with n 
given and assumed fixed. It is computationally more efficient to define an alternative 
mode vector, m*, from which the mode vector, me, and an alternative tensor mode, 
M*, are easily determined.  Let a,,, u*. and X^ denote the values of a, up and X, 

respectively, at the end of the previous step.    The requirement is to solve the 
following set of nonlinear equations: 

Aa=Aa"-E:Aeä Aa" = E:Ae 

T„ = <vn Ax" = Aa" • n 

m--A-T 
m = -=—TT 

X0X= 
m' = ü0m' 

am=E:M- tm=Om-n 

Aed = AXM' Au" = AXme 

Ax = Ax" - AXxm x = Xp, + Ax 

up = u!L + Aup 
P* 

X = Xpr + AX 

x* = r *-=(Tt'x) 
M'=iir(n®m' + m' <8> n) 

(32) 

Fd*=xe'-(l-x*) = 0 

a = cB - AXam 

The first step is to assume that no decohesion occurs, to obtain a trial stress and 
traction: 

cr = a,, + AC T" = a" n (33) 

and then determine the value of the damage function, Fd*", for this trial traction and 

the existing value Xpr. If Fd"" < e the step is purely elastic with no additional 
decohesion and no further action is required. If the inequality is not satisfied, the 
decohesion variables must be incremented. 

Next we describe a one-step algorithm which enforces the requirement Fd = 0 to 
order (AX)3. Perform a Taylor expansion of Fd about the trial state: 

Fd = a(AX)2 + 2bAX + c + 0( AX)3 (34) 
in which the last term indicates the order of the remainder and 

2 ax2 
i 

We choose AX = AX, and AX = AX, to be the solutions to the first-order and second- 
order equations, respectively; i.e., 2bAX, + c = 0 and a(AX2)

:! + 2bAX2 + c = 0 or 

AX,—^ AX2 = -b + f^~c .     (36) 

with the sign chosen so that in the limit of infinitesimal AX we have A\ = AX,. 

2b = ^ 0   ax c = F; (35) 
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[Ad-m,®rn] (40) 

(41) 

Consider the case when the model choice of (20) is used and the Taylor expansion 
is applied to the dimensionless damage function F„°. It follows from (35) that 

c = (T")«-(l-a.V) 
2b = ^l + ^' (37) 

,-.     3x 32xe'   3x , 3r*  32x ,„,„   nlQ., 2a=äÄ:-^-äI+-aT-äF+q(q-1)^ 
in which all terms are to be evaluated at X^ and the trial value of the traction. Note 
that when q = 1, the last term in the expression for a is zero. With a modest amount 
of algebra involving (32), it follows that 

3x      _ 3xe*    m* ,om 
ä=-x» TT=X (38) 

and we immediately have the relation 

2b = -^Cls. + qX<{;' (39) 

Next, we proceed to obtain the coefficient a in (37). We utilize (32) and (38) to 
obtain 

dHc' = _ 1 
3x2        To X 

which leads to 
3x  32x''   9T_[(Tm-Ad-Tm)-(Tm-m-)2] 
dX   3x2    dX XIV 

Finally 

W--1X— nE-"3r--nE-r:(n®"3r) (42) 

in which the minor symmetry of E has been used. We note that 
3m' _ 3m'   3x _     1 32x*'  _  _    1 rA     m-^mn _ 
-dx--dx--dx--j;-d*--x»--i;[A<-m ®m]T» 

with the result 
3x1 32x^[(xm-Ad-xm)-(xm-m-)2] 
3x   dX1 x2 V 

a result identical to that of (41). Therefore 
. _[(x„-Ad-Tj-(x„-m-)2] , q(q-l),q-2 
a - x2~x?    —2—  * '   ■* 

Even with this rather simple form, preliminary numerical results indicate that the 
use of the first-order equation for A^ in (36) is sufficiently accurate and the extra 
computations required to get a is not justified. 

4.3 Separation 
The procedure outlined above holds until separation occurs as indicated by X > 1. 

The given algorithm can be used also for separation with the revised damage function 
Fd' = xe' so that Fd* = 0 enforces the separation condition that x = 0 and Ax = 0. To 

(43) 

(44) 
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prevent the possibility of numerical problems when Fd' is close to zero, the 

decohesion criterion is applied for F„' > £ and the separation condition is used when 

Fd' < e where e is a small positive number (typically 0.01). The value of the stress 

component, <j„=tat, is automatically adjusted through the equilibrium 

equations. 

4.4 Example Solution 
The application given in this section is restricted to a case for which (i) the 

initiation of failure is given directly by a failure criterion rather than by a 
discontinuous bifurcation analysis, and (ii) the orientations of the surfaces of 
decohesion are known, a priori. The purpose of these numerical analyses is: (a) To 
illustrate that the use of jump in displacement as an internal variable together with a 
weak implementation of compatibility provides a simple and useful algorithm in the 
MPM, (b) to show that the MPM does not exhibit the finite element pathologies 
associated with distorted meshes and instabilities with the result that additional 
features such as enhanced strains are not required, and (c) to illustrate by example that 
the material point method does not exhibit the orientation effect often seen with 
finite elements when discontinuities are allowed to propagate at various angles to the 
mesh sides. 

In this example a material composed of grains with isotropic elastic properties 
but anisotropic thermal properties is cooled from room temperature (20° C) to -50° 
C, at which point the temperature is held fixed. The cooling rate is -10° C/(is. The 
coefficient of thermal expansion is 2.25xl0'4/oC along the 1-1 material axis of each 
grain but an order of magnitude smaller, 2.1xl0'5/°C, along the 2-2 material axis. 
Several grains of this material are made into a composite material where the grains 
are assembled into the composite with random orientation. 

Figure 3 shows a 1 mm square sample of grains marked by material points. An 
arrow indicates the 1-1 material direction of each grain. The grains have isotropic 
elastic properties, with a Young's modulus 3.28 GPa, Poisson's ratio 0.3, and 
density 1.9 kg/m3. The interstitial region has the same material properties and is 
also represented by material points (Fig. 4), however, these points are allowed to 
follow a non-associated decohesion constitutive model in which the mode is normal 
to the grain boundary. The decohesion constitutive properties are as follows: the 
peak normal traction is Tnf = 5.5 MPa, q =1, and U0 = 0.055 J/m2. The peak stress 
in shear was not required because of the nonassociated evolution equation. 
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Fig. 3. Sample of anisotropic grains with the direction of the 1-1 material 

axis indicated with an arrow 

The normal to a grain boundary is computed by assigning a scalar color, with the 
value one, to the material points making up the grain, interpolating that color to the 
background mesh and then taking the gradient. The gradient gives the inward normal 
to the grain. Figure 5 shows an example of the computed normals for a grain. The 
computational mesh is square with side length of 25 microns. 
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Fig. 4. Interstitial region is also discretized using material points. 

As the material cools, the anisotropic thermal properties cause the contraction to 
be nonuniform. The effect of the variability in the stress field is seen in Fig. 6 
where contours of the jump in displacement are shown at various times. Decohesion 
starts in the upper right quadrant of the sample, and the location of the initial 
decohesion has the largest value throughout the computation. However, the 
decohesion does not propagate from the maximum all the way across the domain, 
instead a different path on the left side of the sample seems more likely to span the 
domain. This calculation indicates the complex interaction of geometry and material 
properties that make predicting the path of crack propagation so difficult. 
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5. SUMMARY 
A rigid, plastically softening decohesion model has been combined with 

continuum elasticity and traction continuity at a material failure surface to provide a 
relatively simple description for the evolution of material failure. When incorporated 
in the material point method, the result is a constitutive equation subroutine that is 
similar to softening plasticity. A length parameter associated with a material 
element provides a mechanism for ensuring convergence with mesh refinement. As 
the tip of a failure surface propagates through the mesh, the formulation inherent 
with the material point method appears to preclude the diffusion of the crack tip, a 
feature often seen with conventional finite elements. Further investigations 
involving the propagation of curved cracks is necessary to determine whether or not 
the proposed method is general and robust. Nevertheless, in light of the long history 
of complex numerical analysis in connection with crack propagation, we believe the 
simplicity of the decohesion formulation in the material point method holds 
considerable promise for development into a general method for predicting material 
failure. 
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Abstract 
Experimental and numerical simulations are presented in order to define the 
failure mechanism of cementitious materials. 

Triaxial tests on 95 mortar cylinders show there is a change in the failure 
plane orientation as confining pressure increases. The failure is characterized 
by a distinct failure surface or surfaces that change orientation from nearly 
vertical to angled as confinement increases. Cap blocks are used to relieve the 
friction between the platens and the specimens under triaxial loading. The 
same conclusion is obtained by numerical analysis that includes a realistic 3- 
dimensional meso-structure simulation. A modified Gauss point method is 
applied to guarantee the efficiency and accuracy of the finite element 
analyses. The Drucker-Prager criterion and the low tensile strength criterion 
are used to simulate the failure mechanism. 
Key words: Triaxial test, random aggregate distribution, modified Gauss 
point, failure mechanisms 

1 Introduction 

Triaxial tests have shown that the angle of the failure plane for geologic 
materials changes with increasing confining pressure (Wawersik, 1971; 
Murrell,1965). However, no detailed data for concrete has shown that there is 
a similar relationship between the confinement and the change in the angle of 
the principle failure plane. Palaniswamy (1972), commenting on triaxial tests 
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on cement paste, mortar, and concrete, stated that two distinct modes of 
behavior were observed, specifically, a splitting failure at low confining 
pressures, and a crushing failure at large confining pressures. Zimmerman 
(1977) found that the failure plane is always parallel to the direction of 
maximum compressive stress. The apparatus used in his tests employed 
platens to apply lateral pressure to the specimens. These platens may have 
constrained the true failure modes of the specimens. Tests by Gerstle (1980), 
using several different loading devices, showed that boundary constraints 
from the use of platens for lateral loading inhibit transverse deformations. 

In this paper, both experimental and numerical studies show changes in the 
orientation of the failure plane as confining pressure increases. 

Experimentally, it is essential to relieve the friction between the platens 
since this friction severely affects the development of the failure mechanism 
and, consequently, its orientation. Moreover the failure is characterized by a 
distinct failure surface or surfaces that change orientation from nearly vertical 
to angled as confinement increases. The same conclusion is obtained by 
numerical analysis that includes a realistic 3-dimensional meso-structure 
simulation. A modified Gauss point method is applied to guarantee the 
efficiency and accuracy of the huge-scale finite element analyses (148,500 
lattices). Based on comparison of the experimental and numerical results, the 
strength ratio between cement paste (including interface) and coarse aggregate 
is randomly distributed between 0.1 to 0.4. The Drucker-Prager criterion and 
the low tensile strength criterion are used to simulate the failure mechanism. 

2 Experimental Technique 

Triaxial tests were performed with confining pressures ranging from 0 to 56 
Mpa. A total of 95 cylinders were tested in triaxial compression. Evaluating 
the effect of the methods used to relieve friction between the load platens and 
the specimens was essential in this study. 

2.1 Equipment Setup 
A behavioral science engineering laboratories 70 kpa triaxial test cell was 
used to apply the lateral confining pressure. The test cell had a pressure 
transducer that was used to monitor fluid pressure inside the cell. The axial 
load was applied with a universal testing machine. 

Measurements Group, Inc., EA-06-500BL-350 strain gauges were used in 
56% of the tests (Wang and Ruthland, 1995). Only load-displacement data 
were recorded in the remaining tests. Axial load and displacement data were 
recorded on an X-Y plotter. Some of the test data were digitized and stored on 
an IBM-compatible personal computer using an analog to digital converter. 
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2.2 Specimen Preparation 
All triaxial specimens were prepared with a water/cement ratio between .42 
and .47. The cement/aggregate ratio was .25 by weight. Superplasticizer, Friz- 
pak Supercizer 6, was added to increase the workability of the mixes .3% by 
weight of cement. 

Seventy-five specimens measuring 5 cm in diameter by 10 cm in height 
were cast in three batches of 25. Twelve specimens 5 cm in diameter by 20 cm 
in height were cast in a separate batch. 

Cap blocks were prepared to help relieve the friction between the platens 
and the specimens. The cap blocks were 5 cm in diameter and 1.3 to 2.5 cm 
thick. The mix design for the cap blocks was similar to that of the specimens 
except that the cement/aggregate ratio was increased to .4, the water/cement 
ratio was decreased to .35, and the amount of superplasticizer was increased 
to .5%. The goal was to produce a material with similar deformation 
properties but with a higher strength. The modulus and lateral extension ratio 
of the two materials were similar (within 5%), while the uniaxial strength of 
the cap blocks was 50% larger than the strength of the specimens. 

All specimen and cap blocks were polished on a lap table containing a 
coarse grit (100) lap pad. The cylinders and cap blocks contained air voids on 
the surfaces that would tear the triaxial membranes. In order to protect the 
membranes the surface voids were filled with clay. Triaxial membranes were 
placed on the specimens. 

Several methods of relieving the friction between the specimen and the 
platens were tested. Based on some preparing tests, cap blocks alone, cap 
blocks with grease, and cap blocks with polyethylene sheets, were used to 
relieve the friction. All the tests were performed at 0, 1.7, 3.5, 7.0, 14.0, 28.0, 
42.0, and 56.0 Mpa, and they were conducted using a standard triaxial loading 
where the displacement was monotonically increased up to and past the peak 
load. 

3   Mesostructure Simulation 

In meso- or micro-scopic studies, it is necessary to generate a realistic 3- 
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dimensional multiphase system consisting of cement paste and coarse 
aggregate, especially for concrete (Desiderio, 1996). This is because 
mechanical behaviors are determined by extremes in the local stresses, which 
have a close relationship with the distribution of cement pastes and coarse 
aggregates, as well as with aggregate sizes in the meso-structure simulation. 
Here, the Monte Carlo method (Hassold, 1996) is used to simulate the 
cylinder specimen measuring 5 cm in diameter and 10 cm in height. 

Automatic mesh generation produced 148,500 lattices for the cylinder 
sample ( Fig. 1). Generally, that amount of lattices is necessary to reach a 
properly aggregated size of the given concrete specimen. A non-zero index, 
which corresponds to both the phase and orientation of the aggregate, is 
initialized to each lattice by a random function. In a 2-phase simulation (a 
and ß), the sign of S, indicates the phase present at that site, while the 
absolute value of S, corresponds to the orientation of the grain in which the 
site is embedded. Sites with one or more different closest neighbors are 
interface sites, sites with only like nearest neighbors are interior sites. Total 
system energy is specified by assigning a positive energy to interface areas (or 
cement pastes) and zero energy to the interior sites (or coarse aggregates), 
which can be calculated via the Hamiltonian equation (Hockin, 1980) 

H=4i   t   { (Jaa+Jßß+2Jaß)[l-5(Si,Sj)]+(Jaa+Jßr2Jaß) 

Sign(S, )Sign(SJ.)+(Jaa-Jßß)[Sign(Si )+Sign(S;)] } (1) 

In equation (1), N is the total sites of system. Z is the number of neighbors 
of ith site. 8 is the Kronecker delta function. 'Sign' is the sign function 
defined as Sign( S,) equals 1 if S,. is positive, and Sign( S i) equals -1 if 
S i is negative. Jaa, Jßß and Jaß  are a -a , ß - ß, and a - ß 
interfacial energies, respectively. 

In iteration, the kinetic energy of the aggregate is adjusted by the Monte 
Carlo technique. First, a lattice site and a site index are chosen at random. The 
index of the chosen site is then changed to the new index if the corresponding 
total system energy, H, does not increase. After each attempted index change, 
the Monte Carlo step increases, and a simulated mesostructure is yielded. Fig. 
2 is a 3-dimensional simulated mesostructure plot of the cylinder specimen 
that involves 148,500 lattices. Different types of aggregates are composed of 
certain numbers of lattices, and between the aggregates are the interfaces or 
cement pastes. 
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Fig.l Specimen lattice Plot Fig.2 Specimen aggregate distribution 

4   Model Description 

Simulations of the static tests were performed using the finite element analysis 
code, which was developed for static analysis of nonlinear structural systems. 
The Drucker-Prager criterion and the low tensile strength criterion are used. 
Based on comparison of the experimental and numerical results, the strength 
ratio between the cement paste (including interface) and coarse aggregate was 
randomly distributed between 0.1 to 0.4. Table 1 is the parameter used in the 
analysis. 

Table 1   Parameters for coarse aggregate 
Young's 
Modulus 

Poisson's Ratio Maxi.    Tensile 
Stress 

Maxi.     Comp- 
ressive Stress 

Cohesion 

17MPa 0.167 20MPa 100 Mpa 22.4 MPa 
*Strength ratio between cement paste (including interface) and aggregate: 0.1-0.^ 
randomly. 

An 8-node isoparameter 3-dimensional element was used. In this case, there 
were 148,500 lattices in the cylinder model and each of them possessed 
different mechanical properties, such as ultimate strength and modulus of 
elasticity, which need to be incorporated in numerical analyses. However, it is 
very difficult or almost impossible to treat that many elements in finite 
element analysis due to the low efficiency and floating point errors of the 
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calculation.   The  situation  becomes  even  more  difficult  with  nonlinear 
analysis. 

Modified Gauss point method has been successfully used to reduce the 
computer processing time while still guaranteeing accuracy ( Wang and Chen 
,1997). The basic idea of the modified Gauss point method used here is that 
each Gauss point in the numerical integration corresponds to one lattice and, 
therefore, one element will involve a specific number of lattices, say 8 or 27 
in a 3-dimensional problem. The Gauss point coordinates and the 
corresponding weight coefficients need to be modified because of the evenly 
distributed lattices. Table 2 lists the values of Gauss point coordinates, £,, and 
the weighted coefficient, H;, for the different number of Gauss points, n, 
evenly distributed between -1 and +1 in case of 1-dimensional. 

Table 2   Values of £,. corresponding to various n 
n Hi 6 Precise  for mth  Order 

Polynomial 
3 2/3 ±0.707107     0.0 m=3 

4 2/4 +0.794654  ±0.187593 m=4 or 5 

5 2/5 ±0.832497 0.0 ±0.374541 m=5 

6 2/6 ±0.866246 ±0.422522 ±0.374541 m=5 or 6 

0.005 0.01 0.015 

DISPLACE« Em- 

Fig. 3(a) Typical displacement-stress relationship of experimental data (Units of 
displacement is in cm) 
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Fig.3(b) Typical displacement-stress relationship Numerical simulation (Units of 
displacement is in cm) 

In this paper, 27 modified Gauss points or lattices were involved in one 8- 
node element. Therefore, the cylinder specimen had 5,500 elements, which 
stand for 148,500 lattices. Several typical examples (Wang and Chen, 1997) 
show that the modified Gauss point method not only reduces the calculating 
time greatly but also guarantees the accuracy of the computation. 

5 Results and Discussion 

Results of the experimental measurements and numerical analyses are shown 
in Fig. 3 through 5. Very good agreement is found between displacement and 
stress (Fig. 3(a, b)). Fig. 4(a) shows the failure specimens by test, while Fig. 
4(b) shows the damaged cylinders by numerical simulation at various 
confining pressures. Fig. 5 represents comparison of the angles of the failure 
planes by experimental and numerical analyses. It shows that a distinct failure 
surface or surfaces change orientation from vertical to angled as confinement 
increases. Based on this research, there are several points that need to be 
emphasized. First, confining pressure due to friction between platen and 
specimen has a predominating effect on the failure angle of a specimen under 
triaxial loading. It is essential to relieve the friction between the platens and 
the specimens. Second, to predict the failure mechanism accurately, randomly 
distributed cement paste and coarse aggregate is necessary in the simulation 
of 3-dimensional concrete specimen under triaxial loading. 
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P = 0.0 Mpa P=1.7Mpa 

P = 3.5 Mpa P = 7.0 Mpa 

P = 14.0 Mpa P = 28.0 Mpa 

Fig.4(b) Damaged specimen by numerical simulation 

30 



üMsm ystma 

0 ps! 250 psf 

BBS*? 

500 psi 

', -_ "     '•■>»■>* f - 

lWOpsi 20Ößp«st 400Bpsi 

I " 
a m 
S    25 
UJ 

I » 

Fig.4(a). Damaged specimen by experiments 
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Fig.5.  Angle versus confining pressure by test(a)     and numerical  simulation(b) 
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6 Conclusion 

This study presented a procedure to predict the failure mechanisms of 
concrete under triaxial loading. Both experimental and numerical studies showed 
changes in the orientation of the failure plane as confining pressure increased for 
concrete cylinder specimens. For realistic triaxial loading in experiments, it is 
essential to relieve the friction between the platen and specimen. Based on 
comparison of experimental and numerical results, the strength ratio between 
cement paste (including interface) and coarse aggregate is randomly distributed 
between 0.1 to 0.4. It is strongly suggested that a realistic 3-dimensional meso- 
structure simulation be used in a numerical model. The presented modified 
Gauss point method is a key step to guarantee the efficiency and accuracy of the 
simulation. 
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Simulation of the Failure Mechanisms of Quasi-Brittle 
Materials 

M. L Wang and Z. L. Chen 
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One of the major technical interests for quasi-brittle materials is the failure 
mechanism under uniaxial or triaxial loading, or under some other standard 
tests such as beam bending specimen and compact specimen. Recent research 
has led to development of formal procedures for predicting damage behavior of 
quasi-brittle material using computational simulation in the tests mentioned 
above. These procedures have subsequently been programmed into a computer 
module and thus have helped the researcher have a general direction of what 
the corresponding experiment will be. The objective of this paper is to present 
and describe results obtained using meso- or micro-mechanical simulation of 
quasi-brittle materials such as concrete and ceramic. Typical results show that 
the presented method provides a less expensive alternate to understanding the 
failure mechanisms of quasi-brittle materials. 

Keywords: failure mechanism; quasi-brittle; structure simulation; 
modified Gauss point 

Introduction 

While the age of quasi-brittle materials including concrete and ceramic is upon us, 
the ability to accurately predict their performance mechanically has not yet arrived. 
In view of the difficulty in obtaining the failure mechanisms of these materials, one 
must often rely on both experimental and computational simulation, the latter 
provides a much less expensive alternative to the former.1 

Concrete and ceramics, being typical quasi-brittle materials, are widely used in 
advanced scientific experiments and applications. Computational simulation of 
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some of their standard tests gives the researcher an easy and less expensive way to 
master their failure mechanisms. Prior to numerical analyses, it is essential to 
establish a realistic 3-dimensional meso- or micro-structure simulation. Generally, 
hundreds and thousands of lattices or elements need to be included in the simulated 
model. This is extremely important because mechanical behaviors are determined 
by extremes in the local stresses, which have a close relationship with the 
distribution of grains and grain boundaries as well as grain size2. Thus, in order to 
simulate the ceramics realistically, both in a geometrical and mechanical sense, 
enough simulated elements or lattices are essential. 

In this paper, the Monte Carlo method is used to simulate the 3-dimensional 
microstructure. Because numerical analyses of a meso- or microstructure consume 
a lot of computer processing time, a modified Gauss point method is applied to 
reduce the processing time while still guaranteeing accuracy. 

Meso- or Micro-Structure Simulation 

In meso- or micro-scopic studies of quasi-brittle material such as concrete, it is 
necessary to generate a realistic 3-dimensional multiphase system consisting of 
cement paste and coarse aggregate3. As an example, a concrete cylinder specimen 
(Figure 1) measuring 5 cm in diameter and 10 cm in height is divided into 148,500 
lattices. Generally, that amount of lattices is necessary to reach a properly 
aggregated size of the given concrete specimen. Afterward, a non-zero index, 
which corresponds to both the phase and orientation of the aggregate, is initialized 
to each lattice by a random function. In a 2-phase simulation (a and ß), the sign 
of S}   indicates the phase present at that site, while the absolute value of S, 

corresponds to the orientation of the grain in which the site is embedded. Sites 
with one or more different closest neighbors are interface sites, sites with only like 
nearest neighbors are interior sites. Total system energy is specified by assigning a 
positive energy to interface areas (or cement pastes) and zero energy to the interior 
sites (or coarse aggregates), which can be calculated via the Hamiltonian equation 
4 

H=4l   X   { (Jaa+Jßp+2Jaß)[l-5(Si,SJ)]+(Jaa+Jßß-2Jaß) 
o i=i    j=\ 

Sign(S, )Sign(SJ)+(Jaa-Jßß)[Sign(Si )+Sign(SJ.)] } (1) 
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Figure 1   Specimen Lattice Plot Figure 2   Specimen Aggregate 
Distribution 

In equation (1), N is the total sites of the system. Z is the number of neighbors 
of the ith site. 8 is the Kronecker delta function. 'Sign' is the sign function defined 
as Sign(S t ). It equals 1 if S l is positive, and Sign(S,.) equals -1 if S; is negative. 
Jaot, Jßß and Jap  area-a,ß-ß, and a - ß  interfacial energies, respectively. 

In iteration, the kinetic energy of the aggregate is adjusted by the Monte Carlo 
technique. First, a lattice site and a site index are chosen at random. The index of 
the chosen site is then changed to the new index if the corresponding total system 
energy, H, does not increase. After each attempted index change, the Monte Carlo 
step increases, and a simulated mesostructure is yielded. Figure 2 is a 3- 
dimensional simulated mesostructure plot of the cylinder specimen that involves 
148,500 lattices. Different types of aggregates are composed of certain numbers of 
lattices, and between the aggregates are the interfaces or cement pastes. 

The same procedures work for ceramic samples that include grains and their 
interfaces. 
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Model Description 

Simulations of the static tests were performed using the finite element analysis 
code, which was developed for static analysis of nonlinear structural systems. The 
Drucker-Prager criterion and the low tensile strength criterion are applied. 

An 8-node isoparameter 3-dimensional element is used in this code. Generally, 
the simulated model includes hundreds and thousands of lattices, each of them 
possessing different mechanical properties, such as ultimate strength and modulus 
of elasticity, which need to be incorporated in numerical analyses. However, it is 
very difficult or almost impossible to treat that many elements in finite element 
analysis due to the low efficiency and floating point errors of the calculation. The 
situation becomes even more difficult with nonlinear analysis. 

Modified Gauss point method has been successfully used to reduce the 
computer processing time while still guaranteeing accuracy5. The basic idea of the 
modified Gauss point method used here is that each Gauss point in the numerical 
integration corresponds to one lattice and, therefore, one element involves a 
specific number of lattices, say 8 or 27 in a 3-dimensional problem. The Gauss 
point coordinates and the corresponding weight coefficients need to be modified 
because of the evenly distributed lattices. Table 1 lists the values of Gauss point 
coordinates, £,, and the weighted coefficient, H, for the different number of Gauss 

points, n, evenly distributed between -1 and +1 in the case of 1-dimensional 
problem. 

Table 1   Values of £,. Corresponding to Various n 

n Hi & Precise  for m"1  Order 
Polynomial 

3 2/3 ±0.707107     0.0 m=3 

4 2/4 ±0.794654  ±0.187593 m=4 or 5 

5 2/5 ±0.832497 0.0 ±0.374541 m=5 

6 2/6 ±0.866246 ±0.422522 ±0.374541 m=5 or 6 

In this paper, 27 modified Gauss points or lattices are involved in one 8-node 
element. As an example, the cylinder specimen shown in Figure 1 has 5,500 
elements which stand for 148,500 lattices. Numerical examples show that the 
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modified Gauss point method not only reduces the calculating time greatly but also 
guarantees the accuracy of the computation. 

Numerical Examples and Discussions 

1   Four Points Beam Bending 

The chosen numerical example is the so-called four points beam bending problem 
(Figure 3). The beam has a cross section of 3 cm (height) x 1 cm (width), and a 
span of 18 cm. The Young's modulus is 200 GPa, the Poisson ratio is 0.2, and the 
cohesive strength is 17 Mpa. The material of the beam is treated as a realistic 
elasto-plastic. Two models are taken into consideration: 

ILL 
yl e> d zoon 

h/3 

L/3 "■    i ii ■"1 L/3 L/3 

2h/3 

L/2 

Figure 3    4-Points Beam Bending Specimen 

(1)   Common Gauss Point Method 

3x3x3 Gauss points are used in one element to carry the numerical integration. 
A total of 216 elements are included in this model. 

(2) Modified Gauss Point Method 

3x3x3 lattices are included in each element. A total of 216 x 27, or 5832 lattices 
are included in the second model. 

The above two models produce the same numerical results. The yield zoom is 
shown in Figure 3 that occurs at P = 2126 N. Moreover, the two models consume 
almost the same amount of run time although the second one can simulate more 
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lattices than the first. Table 2 shows the comparison between the theoretical and 
numerical results. 

Table 2: Comparison of Horizontal Stresses at h/4 in the Yield Zoom 

Theoretical Numerical 

Horizontal stress 29.45 MPa 29.31 MPa 

This example suggests that although approximately the same amount of run time 
is consumed because they include the same number of integral Gauss points, the 
one using the modified Gauss point method could consider much more lattices and 
produce satisfactory result at the same time. 

2   Cylinder Specimen under Triaxial Loading 

This example describes the failure mechanisms of a concrete specimen under 
triaxial loading. The failure is characterized by a distinct failure surface or surfaces 
that change orientation from nearly vertical to angled as confining pressure 
increase.6 The simulated model that has 148,500 lattices is shown in Figure 2. 
After applying the modified Gauss point method, the specimen involves 5,500 
elements. 

Uniaxial displacement with a 5 um in step is applied on the top of the specimen 
while a certain amount of confining pressure is exerted on the surrounding surface 
of the cylinder. Based on the results of the experiment,6 the friction between the 
platens and the specimen is relieved since this friction severely affects the 
development of the failure mechanisms as confining pressure increases. 

Results of numerical analyses are shown in Figure 4 through 6. Very good 
agreement is found between displacement and stress (Figure 4(a, b)). Figure 5(a) 
shows the failure specimens by test, while Figure 5(b) shows the damaged 
cylinders by numerical simulation at various confining pressures. Figure 6 
represents comparison of the angles of the failure planes by experimental and 
numerical analyses. It shows that a distinct failure surface or surfaces change 
orientation from vertical to angled as confinement increases. Based on this 
research, there are several points that need to be emphasized. First, confining 
pressure due to friction between platen and specimen has a predominating effect 
on the failure angle of a specimen under triaxial loading. It is essential to relieve 
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the friction between the platens and the specimens. Second, to predict the failure 
mechanism accurately, randomly distributed cement paste and coarse aggregate is 
necessary in the simulation of 3-dimensional concrete specimen under triaxial 
loading. Finally, to achieve the best results, simple and reliable nonlinear criteria 
should be chosen. For simplicity, criteria with easily determined parameters are 
recommended. 

Displacement vs Stress 
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Figure 4   Typical Displacement-Stress Relationship: (a) Experimental Data and 
(b) Numerical Simulation (Units of Displacement is in cm) 

pSJ 250 psi SOftpst 1006 psi 2006 pi 4000 psi 

Figure 5(a). Damaged Specimen by Experiments 
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P = 0.0 Mpa P=1.7Mpa P = 3.5 Mpa 

P = 7.0 Mpa P = 14.0 Mpa P = 28.0 Mpa 

Figure 5(b)   Damaged Specimen by Numerical Simulation 
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ANCLE Of THE FAILURE PLANE VERSUS CONFINING PRESSURE 

Angle versus Confining Pressure by FEM 

1 i_.   — —_-  
"t*"                                       ' 

— ■    !  / -«  / ■ 

i.A •      ,           ' 
i"'. , j.           . 

-f.— * 
t 

L^   ...           .      ! 
 OATAKTA                 | 

•    TEtT UTA                 \ 

 CUrrtFffBCTA         j      - ~~1 

• i           ; r 
10.0 15.0 20.0 

Confining Pressure (MPa) 

(a) (b) 

Figure 6    Angle versus confining pressure by test(a) and numerical simulation(b) 

3   Compact Tensile Specimen 

A compact tensile specimen was analyzed in this example. The configuration of the 
specimen was 25mm(width) x30mm(height) xl.5mm(depth). The specimen was 
loaded by a load-point displacement that is separated into 12 steps with 2.5|im 
each. A modified Gauss point method is applied in both of the following cases. 

(1) The Effect of Grain Size 

Two finite element models are put into consideration with total lattice numbers of 
6701 and 15,182, respectively. Figures 7 and 8 show the grain size distributions 
with 800 and 1100 |im, respectively. Figure 9 is the corresponding Peq vs 
displacement plot that reveals that the smaller the grain size, the smaller the 
compact tensile Peq. This conclusion is the same as mentioned in reference 7. 

(2) The Effect of Boundary Conditions 

Fixed and free boundary conditions are applied to the above specimen(Figure 10). 
This model has 6701 lattices and corresponding grain size is 1100 u\m as shown in 
Figure 7. Figure 11 is the plot of equivalent load Peq vs applied known 
displacement, where Peq is calculated by the equivalent condition. Figures 12 
shows the comparison of the final damaged specimen with two different boundary 
conditions. According to the profiles of each step in simulation, the cracking starts 
from the crack tip and develops as the applying tensile force increases. Several 
single cracks occur during the simulation. Some of them develop while others stop 
cracking or even go back to closure. The final failure does not take place until one 
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or two main cracks reach the critical cracking length. Fig. 13-15 are the 
experimental profiles of the cracking development that match the numerical 
simulation very well. 
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Free Boundary Condition Fixed Boundary Condition 

Figure 10  Configuration of Specimen 
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Figure 11   Effect of Boundary condition (Grain Size: 1100 fim) 
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Figure 12   Damaged Specimen (a) Fixed Boundary (b) Free Boundary Condition 
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Fig. 13    Microscope Profile of Cracking Specimen (Step 1) 
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Fig. 14    Microscope Profile of Cracking Specimen (Step 2 ) 
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Fig. 15 Microscope Profile of Cracking Specimen (Step 3 ) 

Conclusion 

This study presented a procedure to predict the failure mechanisms of quasi-brittle 
materials under triaxial loading and some other standard tests. Prior to numerical 
analyses, it is essential to have a realistic 3-dimensional meso- or micro-structure 
simulation. The presented modified Gauss point method is another key step to 
guarantee the efficiency and accuracy of the simulation. The mechanical properties 
and failure mechanisms predicted by the above method are in good agreement with 
the previous experimental results. Thus, the method provides a less expensive 
alternative in understanding the failure mechanisms of quasi-brittle materials. 
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